

Intranasal Cooling for Encephalopathy Prevention in **Combat Casualties (ICEPICC)** Ryan T. Myers, PhD^{1*}, Ryan Binette¹, Ian Cohen¹, Gordon Hirschman¹

Background

- There were 361,092 brain injuries recorded in the US Military between 2000 and 2016¹
- Secondary effects of TBI include ischemia, swelling, cerebral edema, and increased intracranial pressure
- These effects lead to cell death from lack of blood flow within 30 minutes
- Prolonged oxygen deprivation causes autoregulation failure and programmed cell death within 6 hours

- Cooling the brain within this time window can reduce these secondary injuries
- **Problem: there are currently no FDA** approved and/or field-able options to cool the brain at the point of injury in far forward <u>scenarios</u>

Appro

- Intrar and t
- Possi •
- <u>Esta</u> <u>level</u> <u>(can</u>

Metho

- Pugh establ
- Literat therap
- Two h

Resul

- Two
- Both
- Unde

*-Principal Investigator										STEMS COMMAN		
roach							Conclusions and Future Work					
 anasal cooling has been shown effective at reducing brain temperature back to normal to therapeutic hypothermic levels (33°C-35°C) asible intranasal cooling techniques include: Evaporative Cooling (PFC gas spray) Convective Cooling (Cold airflow) Conductive Cooling (Chilled saline flow through) ablished Research Goal: Intranasally cool the brain to therapeutic hypothermic les from point of injury through evacuation (>4 hours) via a self contained system in not rely on external power, air, or material supply) h Chart analysis revealed Convective Cooling as the appropriate approach for the blished treatment environment rature suggests that 10°C nasal airflow at a rate of 10-30 L/min is sufficient to cool to appeutic hypothermic levels² 									 Vortex tube system likely optimized where TEC system can be optimized in future work Vortex tube system requires ~175 lbs. of gas tanks to operate for 4 hours TEC system operates on military approved Liion batteries for >15 hours using control strategies 			
 heat removal strategies were evaluated through benchtop model testing: Vortex Tube Cooling (leverages high flow and pressure to generate cold air outlet) 										subject study		
 Thermoelectric Cooling [TEC] (leverages Peltier effect to convert electricity to a temperature differential) ults benchtop systems were compiled and operated as designed box Tube and TEC cooling methods demonstrated as feasible: 									Phase I TEC Benchtop Prototype Vortex Tube Benchtop Prototype	Phase II Clinical Animal Subject Prototype Animal Studies Human Subject Tests	Pivotal Clinical Trial Pivotal Clinical Trial Pivotal Clinical Trial	
 Vortex Tube: 4.1°C at 2 minutes @ 25 L/min TEC: 6.0°C at 5.4 minutes @ 25 L/min 												
 TEC. 8.0°C at 5.4 minutes @ 25 L/minutes @								Corps cont • Contact In	 This work was funded in part under US Marine Corps contract M67854-17-C-6548 Contact Information Ryan T. Myers PhD 			
	Functional component does not require electricity	Small form factor	Low pressure	Small air supply	Can be feasibly run on battery	Can use hospital air supply	Variable temp and/or flowrate	Can deliver temp and/or flowrate required	Can Control Temperature Bi- Directionally	585-613-534 rmyers@Viv Vivonics., In Bedford, MA References:	49 vonics.com IC.	<u>s-tbi</u>
Κ	Х	Х				Х	Х	Х			.F., L. Keenliside, and TY. Lee cooling method using vortex	· •
		Х	Х	Х	Х	Х	Х	Х	X	feasibility stud	y. The American journal of em	

1-Vivonics, Inc., Bedford, MA

C:	13 hours of continuous use,	< 20 lbs., 0.35 ft ³

medicine, 2016. 34(5): p. 887-894.